Failure of anti tumor-derived endothelial cell immunotherapy depends on augmentation of tumor hypoxia
نویسندگان
چکیده
We have previously demonstrated that Tenascin-C (TNC)(+) human neuroblastoma (NB) cells transdifferentiate into tumor-derived endothelial cells (TDEC), which have been detected both in primary tumors and in tumors formed by human NB cell lines in immunodeficient mice. TDEC are genetically unstable and may favor tumor progression, suggesting that their elimination could reduce tumor growth and dissemination. So far, TDEC have never been targeted by antibody-mediated immunotherapy in any of the tumor models investigated. To address this issue, immunodeficient mice carrying orthotopic NB formed by the HTLA-230 human cell line were treated with TDEC-targeting cytotoxic human (h)CD31, that spares host-derived endothelial cells, or isotype-matched mAbs. hCD31 mAb treatment did not affect survival of NB-bearing mice, but increased significantly hypoxia in tumor microenvironment, where apoptotic and proliferating TDEC coexisted, indicating the occurrence of vascular remodeling. Tumor cells from hCD31 mAb treated mice showed i) up-regulation of epithelial-mesenchymal transition (EMT)-related and vascular mimicry (VM)-related gene expression, ii) expression of endothelial (i.e. CD31 and VE-cadherin) and EMT-associated (i.e. Twist-1, N-cadherin and TNC) immunophenotypic markers, and iii) up-regulation of high mobility group box-1 (HMGB-1) expression. In vitro experiments with two NB cell lines showed that hypoxia was the common driver of all the above phenomena and that human recombinant HMGB-1 amplified EMT and TDEC trans-differentiation. In conclusion, TDEC targeting with hCD31 mAb increases tumor hypoxia, setting the stage for the occurrence of EMT and of new waves of TDEC trans-differentiation. These adaptive responses to the changes induced by immunotherapy in the tumor microenvironment allow tumor cells to escape from the effects of hCD31 mAb.
منابع مشابه
In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملDendritic Cell Maturation with CpG for Tumor Immunotherapy
Background: Bacterial DNA has immunostimulatory effects on different types of immune cells such as dendritic cells (DCs). Application of DCs as a cellular adjuvant represents a promising approach in the immunotherapy of infectious disease and cancers. Objectives: To investigate the effect of tumor antigen pulsed DCs in the presence of CpG-1826 in treatment of a murine model of cancer. Methods: ...
متن کاملBlockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کاملVascular normalization: a strategy to recondition the tumor immune microenvironment
Malignant tumors escape from host immune surveillance through multiple mechanisms. Of these, abnormal tumor vasculature and hypoxia are critical in establishing an immunosuppressive tumor microenvironment, and consequently, impeding an active cancer immunotherapy. Thus, we hypothesized that vascular normalization can recondition the tumor immune microenvironment and enhance a cancer immunothera...
متن کاملEffects of Dendritic Cell Vaccine Activated with Components of Lieshmania Major on Tumor Specific Response
Background: Dendritic cells (DCs) contribute essentially to the outset and course of immune responses. So in patients with malignancy, there have been considerable interests in use of these cells in different interventions. Objective: To evaluate the impact of Leishmania major’s components on DC maturation and their use as a therapeutic agent against t...
متن کامل